Портал | Содержание | О нас | Пишите | Новости | Голосование | Топ-лист | Дискуссия Rambler's Top100

TopList Яндекс цитирования

НОВОСТИ
"РУССКОГО ПЕРЕПЛЕТА"

ЛИТЕРАТУРА

Новости русской культуры

Афиша

К читателю

Содержание

Публицистика

"Курск"

Кавказ

Балканы

Проза

Поэзия

Драматургия

Искания и размышления

Критика

Сомнения и споры

Новые книги

У нас в гостях

Издательство

Книжная лавка

Журнальный зал

ОБОЗРЕНИЯ

"Классики и современники"

"Слово о..."

"Тайная история творений"

"Книга писем"

"Кошачий ящик"

"Золотые прииски"

"Сердитые стрелы"

КУЛЬТУРА

Афиша

Новые передвжиники

Фотогалерея

Музыка

"Неизвестные" музеи

Риторика

Русские храмы и монастыри

Видеоархив

ФИЛОСОФИЯ

Современная русская мысль

Искания и размышления

ИСТОРИЯ

История России

История в МГУ

Слово о полку Игореве

Хронология и парахронология

Астрономия и Хронология

Альмагест

Запечатленная Россия

Сталиниана

ФОРУМЫ

Дискуссионный клуб

Научный форум

Форум "Русская идея"

Форум "Курск"

Исторический форум

Детский форум

КЛУБЫ

Пятничные вечера

Клуб любителей творчества Достоевского

Клуб любителей творчества Гайто Газданова

Энциклопедия Андрея Платонова

Мастерская перевода

КОНКУРСЫ

За вклад в русскую культуру публикациями в Интернете

Литературный конкурс

Читательский конкурс

Илья-Премия

ДЕТЯМ

Электронные пампасы

Фантастика

Форум

АРХИВ

Текущий

2003

2002

2001

2000

1999

Фотоархив

Все фотоматериалы


Новости
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

26.10.2020
20:25

Специальная теория относительности помогла компьютеру предсказать будущее

    Британские специалисты по машинному обучению разработали систему прогнозирования будущих событий, основанную на концепциях специальной теории относительности: причинности, пространства-времени Минковского и световых конусах. Алгоритм был успешно испытан в задаче предсказания и генерации новых кадров на основе набора изображений. По словам разработчиков созданный ими подход универсален, может применяться для множества задач и будет востребован там, где необходимо прогнозирование развития событий в будущем с учетом причинно-следственных связей, например в области медицины и в автономных транспортных средствах. Препринт выложен на arXiv.org.

    Ежедневно, иногда сами того не замечая, мы пытаемся предсказать как будут развиваться события вокруг нас. Например, если у двигающегося перед нами автомобиля включен сигнал указателя поворота, то можно предполагать, что он с определенной вероятностью совершит маневр в соответствующем направлении. Однако, автомобиль также может продолжить движение без изменений, остановиться, или повернуть в противоположную указываемому направлению сторону. Эти события вероятны в большей или меньшей степени, и мы можем ожидать их, основываясь на опыте взаимодействия с миром и интуитивном понимании законов физики и причинно-следственных связей. С другой стороны, вряд ли мы будем всерьез рассматривать возможность того, что автомобиль внезапно исчезнет, и вместо него на дороге вдруг появится динозавр.

    В отличие от людей, у компьютеров нет интуитивного понимания причинно-следственных связей, поэтому прогнозирование будущих событий для них оказывается непростой задачей. При этом во многих областях, где сегодня происходит интенсивное внедрение систем с машинным обучением, появление такой способности могло бы повысить уровень безопасности. Например, автомобиль под управлением автопилота мог бы спрогнозировать и оценить вероятность того, что стоящий у дороги ребенок может внезапного выбежать на проезжую часть.

    Существующие подходы к решению задачи предсказания будущего в машинном обучении сводятся, например, к тренировке моделей на последовательностях кадров видео. Таким способом алгоритм обучают выявлять закономерности в событиях, которые в дальнейшем можно использовать для того, чтобы сгенерировать новые, ранее не существовавшие кадры, продолжающие эту последовательность. Например, можно показать программе последовательность кадров с двигающимся человеком, а затем попросить ее сгенерировать следующие несколько кадров, которые бы продолжили исходную последовательность. Однако у подходов, использующих серии и последовательности кадров, есть склонность быстро накапливать ошибки с увеличением числа сгенерированных кадров.

    Исследователи под руководством Атанасиоса Влонцоса (Athanasios Vlontzos) из Имперского колледжа Лондона использовали иной подход. Они разработали алгоритм на основе фундаментальных концепций из специальной теории относительности (СТО), таких как пространство-время и световые конусы.

    В СТО пространство-время (или пространство Минковского) представляет собой объединение трехмерного евклидова пространства с четвертым временны́м измерением. В таком пространстве каждому событию можно сопоставить точку, пространственные координаты которой описывают место, где событие произошло, а временна́я координата — момент времени, когда оно случилось.

    Ограничение на максимально достижимую скорость распространения сигналов (в СТО это скорость света) позволяет выделить в пространстве-времени область, называемую световым конусом, с центром в исходном событии. Множество точек внутри выделенной области будет связано с исходным событием причинно-следственными связями. Так, в конусе будущего, лежащем выше вершины (исходное событие) будут расположены все точки, на которые исходное событие может повлиять, а в нижнем конусе прошлого, — события, которые могли повлиять на рассматриваемое событие в вершине. При этом точки, находящиеся за пределами светового конуса, не связаны причинно-следственными связями с исходным событием.

    Разработчики использовали эту концепцию для того, чтобы ограничить варианты возможных новых кадров, генерируемых их алгоритмом, такими, которые близки по содержанию к исходному изображению и отбросить изображения, сильно отличающиеся от него. В качестве основы для алгоритма была выбрана разновидность популярного метода для обучения генеративных моделей — вариационный автокодировщик Пуанкаре. Подаваемые на вход изображения преобразуются энкодером в представление в скрытом пространстве, которое обладает свойствами пространства Минковского с восемью пространственными и одним временным измерениями. Такая размерность пространства была выбрана как оптимальная экспериментальным путем. Затем алгоритм строит световые конусы вокруг этих точек и ищет их пересечение для того, чтобы выделить ту часть скрытого пространства, в которой могут находиться будущие (или прошлые, в нижнем конусе) кадры. Похожие по содержанию кадры оказываются недалеко друг от друга. В дальнейшем производя выборку из этого подпространства можно пытаться предсказывать будущие кадры.

    В качестве наборов данных для обучения модели исследователи использовали модифицированный набор moving MNIST, состоящий из небольших фрагментов видео с перемещающимися рукописными цифрами. Каждый фрагмент представляет собой последовательность из 30 кадров. При этом один из них берется из исходного набора данных MNIST, а последующие кадры — случайные непрерывные смещения исходного изображения. Всего было использовано 10000 фрагментов из этого набора. Кроме того, разработчики использовали набор данных KTH action recognition dataset, состоящий из коротких видеоклипов, демонстрирующих движения людей, например ходьбу или взмахи руками. При этом нужно заметить, что кадры в тренировочных наборах воспринимались алгоритмом разрозненно, а не в виде связанных последовательностей или серий.

    Затем исследователи поручили алгоритму генерацию множества потенциально возможных кадров на основе входного одиночного тестового кадра. Несмотря на то, что в весах нейросети отсутствует временна́я информация, так как обучение проходило на совокупности отдельных кадров, а не их последовательностях, оказалось, что алгоритм способен прогнозировать подходящие будущие возможные кадры. Например, если на вход подается кадр, на котором изображен идущий человек с короткими волосами и в рубашке, то алгоритм генерирует наиболее подходящие кадры, на которых изображен такой же человек, и отбрасывает сильно отличающиеся кадры, например с людьми с длинными волосами или без рубашки.

    Как утверждают авторы исследования, разработанный ими алгоритм не подвержен эффекту накопления ошибок, так как он не полагается на способность нейронных сетей извлекать и запоминать структурную и временну́ю информацию из обрабатываемых изображений. На данный момент диаметр конуса выбирается вручную и считается фиксированным, что означает постоянную скорость эволюции для всех кадров и конусов. Однако в реальности эти скорости могут быть разными. В будущем исследователи планируют внедрить автоматическую подстройку диаметров световых конусов.

    Алгоритм может использоваться в областях, где требуется прогнозирование возможных вариантов развития событий. Например, помимо применения в автопилотах для повышения безопасности автономных транспортных средств, новый подход может быть использован в медицине для прогнозирования того, как лекарственные препараты будут воздействовать на состояние пациента, или как будет прогрессировать заболевание на основании данных снимков МРТ и назначаемого лечения.

    По информации https://nplus1.ru/news/2020/10/26/causal-future-prediction-and-minkowski-space-time

    Обозрение "Terra & Comp".

Выскажите свое мнение на:

26.10.2020
20:21

Темную материю ограничили с помощью оптических часов

26.10.2020
14:30

Новые острова и мысы: Арктика меняется до неузнаваемости

26.10.2020
14:26

Откуда на Солнце пятна и как они влияют на Землю

26.10.2020
14:19

Ученые разгадали тайну необычной нейтронной звезды, открытой 20 лет назад

26.10.2020
14:16

Зачем урчат кошки и 5 загадок природы и космоса

26.10.2020
13:37

Новые подробности об атмосфере «запрещенного теорией» горячего нептуна»

24.10.2020
16:21

Быстро вращающиеся звёзды в центре Млечного Пути могли мигрировать туда с окраин галактики

24.10.2020
16:17

TESS обнаружил сверхгорячий Нептун LTT 9779b

24.10.2020
16:12

Астрономы обнаружили испаhённые металлы в атмосфере горячего Юпитера

24.10.2020
15:42

Водородный бум обеспечит рост ветровой и солнечной энергетики на 200 миллиардов долларов

24.10.2020
15:37

Землетрясения и засухи ускорили развитие человеческой культуры 320 тысяч лет назад

24.10.2020
15:33

Взрыв звездной системы Апеп способен уничтожить Землю

24.10.2020
15:29

После "битвы профессоров"

24.10.2020
15:15

Будущей марсианской колонии придется пройти жесточайший тест на автономность

24.10.2020
15:12

Nokia развернет на Луне первую еть 4G к 2022 году

24.10.2020
12:49

"Отчёт о чтении книги о Дягилеве. Десятое продолжение." - новое в литературном обозрении Соломона Воложина

23.10.2020
19:03

У древних майя обнаружили современные технологии

23.10.2020
19:00

Открыт феномен квантового замедления времени

23.10.2020
18:57

Климатические изменения в Арктике пошли по «жесткому» сценарию

<< 681|682|683|684|685|686|687|688|689|690 >>

НАУКА

Новости

Научный форум

Почему молчит Вселенная?

Парниковая катастрофа

Хронология и парахронология

История и астрономия

Альмагест

Наука и культура

2000-2002
Научно-популярный журнал Урания в русском переплете
(1999-200)

Космические новости

Энциклопедия космонавтика

Энциклопедия "Естествознание"

Журнальный зал

Физматлит

News of Russian Science and Technology

Научные семинары

НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах"

"TERRA & Comp"

"Неизбежность странного микромира"

"Биология и жизнь"

ОБРАЗОВАНИЕ

Открытое письмо министру образования

Антиреформа

Соросовский образовательный журнал

Биология

Науки о Земле

Математика и Механика

Технология

Физика

Химия

Русская литература

Научная лаборатория школьников

КОНКУРСЫ

Лучшие молодые
ученые России

Для молодых биологов

БИБЛИОТЕКИ

Библиотека Хроноса

Научпоп

РАДИО

Читают и поют авторы РП

ОТДЫХ

Музеи

Игры

Песни русского застолья

Народное

Смешное

О НАС

Редколлегия

Авторам

О журнале

Как читать журнал

Пишут о нас

Тираж

РЕСУРСЫ

Поиск

Проекты

Посещаемость

Журналы

Русские писатели и поэты

Избранное

Библиотеки

Фотоархив

ИНТЕРНЕТ

Топ-лист "Русского переплета"

Баннерная сеть

Наши баннеры

НОВОСТИ

Все

Новости русской культуры

Новости науки

Космические новости

Афиша

The best of Russian Science and Technology

 

 


Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

Редколлегия | О журнале | Авторам | Архив | Ссылки | Статистика | Дискуссия

Галерея "Новые Передвижники"
Пишите

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Русский Переплет
Rambler's Top100 TopList